Записи с меткой «пар»

Вязкостно-температурные свойства масел

Вязкость масла для двигателей влияет на надежность прокачивания масла по системе смазки, на легкость и быстроту пуска двигателя, уплотнение поршневых колец в цилиндре, на степень очистки масла в фильтрах. Поэтому смазочные масла должны иметь определенную вязкость при рабочей температуре. Рабочая температура моторных масел составляет 100°С, что соответствует среднему значению температуры масла в низкотемпературной зоне (картер, коленчатый вал) двигателей внутреннего сгорания. Максимальная температура масла в трансмиссиях большинства автомобилей близка к 100 °С.

Вязкость при температуре 100 °С включается в маркировку всех моторных и некоторых трансмиссионных масел. Например, в марке М-8Б цифра 8 означает номинальную вязкость (в мм2/с) при 100 °С.

Вязкость масла должна возможно меньше изменяться в зависимости от температуры. Так, при охлаждении летнего дизельного масла марки М-10Г2 со 100 до 0°С вязкость его увеличивается в 250 раз.

Вязкостно-температурные свойства отечественных масел в ГОСТ представляют так называемым индексом вязкости. Индекс вязкости — условный параметр, отражающий результат сопоставления по вязкостным показателям данного масла с двумя эталонными маслами, вязкостно-температурные свойства одного из которых приняты за 100, а второго за 0 ед. Индекс вязкости масла определяют при помощи номограммы.

От вязкостно-температурных свойств масла зависят легкость пуска двигателя и износ его деталей при низких температурах. Масло, у которого резко повышается вязкость при отрицательных температурах, плохо перекачивается по системе смазки и не поступает в необходимых количествах к трущимся деталям а также создает большое сопротивление провертыванию коленчатого вала.

Зная предельную вязкость (80… 120 мм2/с), при котор0, стартер автомобиля развивает минимально необходимую для пуска данного двигателя частоту вращения коленчатого вал, (30…50 об/мин для карбюраторных и 100…300 об/мин для дизельных двигателей), по вязкостно-температурной кривой масла можно установить минимальную температуру масла, при которой возможен пуск двигателя.

Виды трения

Имеется три основных вида трения: сухое, граничное и жидкостное.

По характеру перемещения трущихся деталей различают трение скольжения и трение качения.

Сухое трение возникает при отсутствии масла между трущимися поверхностями. Этот вид трения вызывает максимальный расход энергии на трение, усиленный износ деталей и большое выделение тепла.

Потери энергии при сухом трении в десятки раз выше, чем при трении деталей, разделенных слоем масла, когда коэффициент трения составляет 0,01…0,001.

Сухое трение необходимо для отдельных трущихся деталей тормозного механизма и сцепления. Во всех других случаях, когда потери на трение должны быть минимальными, желательно, чтобы детали работали в условиях жидкостного трения.

Жидкостное трение возникает, когда трущиеся поверхности разделены маслом. При этом происходит трение не между твердыми телами, а между слоями масла. Толщина масляного слоя должна быть 0,02…0,03 мм.

Масляный слой может разрушаться при значительном увеличении нагрузки, а также при резком изменении частоты вращения коленчатого вала и большом повышении температуры, вызывающем уменьшение вязкости масла.

Граничное трение возникает между трущимися деталями, «а поверхности которых остается лишь тончайший молекулярный слой масляной пленки.

Способность масла образовывать масляную пленку зависит от наличия в нем поверхностно-активных молекул, которые адсорбируются на поверхности трения.

Склонность к отложениям

К отложениям относят липкие продукты, оседающие в деталях системы питания автомобилей, и нагары в камерах сгорания двигателей. Источниками образования липких отложений являются химически нестойкие углеводороды, смолистые вещества, тяжелые неиспарившиеся фракции бензина, а также продукты разложения углеводородов смазочного масла.

Наибольшие отложения вызывают смолистые вещества, образующиеся при окислении химически нестойких непредельных углеводородов и сернистых соединений, находящихся в бензинах.

Свойства определяющие испаряемость бензинов

Способность жидкости переходить из жидкого состояния в парообразное называется испаряемостью. От этого показателя зависят надежность поступления топлива из бака в карбюратор, скорость образования и качество топливовоздушной (горючей) смеси.

Автомобильные бензины должны обладать определенной испаряемостью, которая обеспечивала бы легкий пуск двигателя, быстрый его прогрев, полное сгорание топлива в прогретом двигателе, невозможность образования паровых пробок в топливной системе.

Смесь бензина и воздуха необходимого состава приготовляется в карбюраторе, который служит дозирующим устройством. Образование топливовоздушной смеси начинается в смесительной камере карбюратора и заканчивается в цилиндрах двигателя. Основной процесс испарения бензина и перемешивания его паров с воздухом происходит во впускном трубопроводе.

Для улучшения смесеобразования путем увеличения поверхности испарения бензин, вытекающий через калиброванные отверстия жиклеров и распылители в зону диффузоров, подхватывается потоком всасываемого воздуха и распыляется. Однако при этом испаряется только часть бензина. Основная часть распыленного топлива уносится потоком воздуха во впускной трубопровод, где мелкие капли испаряются, а крупные оседают на стенках, образуя жидкую пленку. Под воздействием потока воздуха эта пленка, постепенно испаряясь, поступает по стенкам впускного трубопровода в цилиндры двигателя.

Комментарии